2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
January 21st, 2025
Version: 1
Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (
biochemistry
biorxiv

Molecular sorting of nitrogenase catalytic cofactors

Salinero-Lanzarote, A.Open in Google Scholar•Lian, J.Open in Google Scholar•Namkoong, G.Open in Google Scholar•Suess, D. L. M.Open in Google Scholar•Rubio, L. M.Open in Google Scholar•Dean, D. R.Open in Google Scholar•Perez-Gonzalez, A.Open in Google Scholar

The free-living diazotroph Azotobacter vinelandii produces three genetically distinct but functionally and mechanistically similar nitrogenase isozymes, designated as Mo-dependent, V-dependent, and Fe-only. They respectively harbor nearly identical catalytic cofactors that are distinguished by a heterometal site occupied by Mo (FeMo-cofactor), V (FeV-cofactor), or Fe (FeFe-cofactor). Completion of FeMo-cofactor and FeV-cofactor formation occurs on molecular scaffolds prior to delivery to their catalytic partners. In contrast, completion of FeFe-cofactor assembly occurs directly within its cognate catalytic partner. Because hybrid nitrogenase species that contain the incorrect cofactor type cannot reduce N2 to support diazotrophic growth there must be a way to prevent misincorporation of an incorrect cofactor when different nitrogenase isozyme systems are produced at the same time. Here, we show that fidelity of the Fe-only nitrogenase is preserved by blocking the misincorporation of either FeMo-cofactor or FeV-cofactor during its maturation. This protection is accomplished by a two-domain protein, designated AnfO. It is shown that the N-terminal domain of AnfO binds to an immature form of the Fe-only nitrogenase and the C-terminal domain, tethered to the N-terminal domain by a flexible linker, has the capacity to capture FeMo- and FeV-cofactor. AnfO does not prevent the normal activation of Fe-only nitrogenase because completion of FeFe-cofactor assembly occurs within its catalytic partner and, therefore, is never available for capture by AnfO. These results support a post-translational mechanism involving the molecular sorting of structurally similar metallocofactors that involve both protein-protein interactions and metallocofactor binding while exploiting differential pathways for nitrogenase associated catalytic cofactor assembly.

Similar Papers

biorxiv
Wed Jul 02 2025
Aggregation of HAPLN2, a component of the perinodal extracellular matrix, is a hallmark of physiological brain aging in mice
Protein aggregation is a hallmark of neurodegenerative diseases and is also observed in the brains of elderly individuals without such conditions, suggesting that aging drives the accumulation of protein aggregates. However, the comprehensive understanding of age-dependent protein aggregates involved in brain aging remains unclear. Here, we investigated proteins that become sarkosyl-insoluble with...
Watanabe, A.
•
Hirayama, S.
•
Kominato, I.
•
Marchese, S.
...•
Murata, S.
biorxiv
Wed Jul 02 2025
Structure and quenching of a bundle-shaped phycobilisome
Cyanobacteria use soluble antenna megacomplexes, phycobilisomes (PBS), to maximize light-harvesting efficiency and small photoswitchable orange carotenoid proteins (OCPs) to down-regulate PBS in high light. Among known PBS morphologies, the one from the basal cyanobacterial genus Gloeobacter still lacks detailed structural characterization. Here, we present the cryo-EM structure of the G. violaceu...
Burtseva, A. D.
•
Slonimskiy, Y. B.
•
Baymukhametov, T. N.
•
Sinetova, M. A.
...•
Sluchanko, N. N.
biorxiv
Wed Jul 02 2025
Oxidant-mediated amino acid conversion of angiotensin II: Effects on gene expression in vascular smooth muscle cells.
Reactive oxygen species (ROS) play important roles in the pathogenesis of various diseases. One mechanism of protein oxidation is carbonylation, to which Arginine (Arg) and proline (Pro) are particularly susceptible. Both residues produce glutamic semialdehyde that can further be oxidized to glutamic acid (Glu). Thus, Arg, Pro, and Glu could be interchangeable, suggesting that ROS promote amino ac...
Suzuki, Y. J.
•
Teramoto, T.
biorxiv
Wed Jul 02 2025
Dissecting the effects of single amino acid substitutions in SARS-CoV2 Mpro
Successfully predicting the effects of amino acid substitutions on protein function and stability remains challenging. Recent efforts to improve computational models have incluzded training and validation on high-throughput experimental datasets, such as those generated by deep mutational scanning (DMS) approaches. However, DMS signals typically conflate a substitution's effects on protein functio...
Sreenivasan, S.
•
Fontes, J.
•
Swint-Kruse, L.
biorxiv
Wed Jul 02 2025
Sideroflexins enable mitochondrial transport of polar neutral amino acids
Mitochondria contribute to compartmentalized metabolism in eukaryotic cells, supporting key enzymatic reactions for cell function and energy homeostasis. However, this compartmentalization necessitates regulated metabolite transport across mitochondrial membranes. Although many transport proteins have been identified, several mitochondrial amino acid transporters remain largely uncharacterized. Us...
Block, S.
•
Chi, F.
•
Rosen, P. C.
•
Pineda, S. S.
...•
Vander Heiden, M. G.
biorxiv
Wed Jul 02 2025
Urolithin B reduces the aggregate load of islet amyloid polypeptide in Caenorhabditis elegans
The progressive loss of pancreatic {beta}-cells is one of the defining features of Type 2 Diabetes Mellitus (T2DM), and is thought to be driven by the aggregation of islet amyloid polypeptide (IAPP). This highly amyloidogenic pancreatic hormone is co-secreted with insulin, and its elevated secretion can lead to toxic fibrillar aggregation. Despite numerous studies focusing on understanding the mol...
Akdag, M.
•
Ferreira, S.
•
Menezes, R.
•
Sinnige, T.
biorxiv
Tue Jul 01 2025
Phase-Specific Antibiotic Resistance Mechanisms in an Escherichia coli B Strain
The majority of antibiotics developed to date target the fast-growing phase of bacteria, which typically occurs during active infection and resembles the exponential growth phase of laboratory-grown cultures. However, many pathogenic bacteria in the human body occupy environments where nutrients are limited and persist in a low-metabolic state, mirroring the stationary phase observed in laboratory...
Terrazas-Lopez, M.
•
Aitken, V.
•
Zeczycki, T. N.
•
Koculi, E.
biorxiv
Tue Jul 01 2025
A viral SAVED protein with ring nuclease activity degrades the CRISPR second messenger cA4
Type III CRISPR systems typically generate cyclic oligoadenylate (cOA) second messengers such as cyclic tetra-adenylate (cA4) on detection of foreign RNA, activating ancillary effector proteins which elicit a diverse range of immune responses. The CalpLTS system elicits a transcriptional response to infection when CalpL binds cA4 in its SAVED (SMODS associated and fused to various effectors domain...
Orzechowski, M.
•
Hoikkala, V.
•
Chi, H.
•
McMahon, S.
...•
White, M. F.
biorxiv
Tue Jul 01 2025
Activity-based probes and chemical proteomics uncover the biological impact of targeting HMGCS1.
Mevalonate is a precursor for essential metabolites, such as isoprenoids and sterols. Its synthesis starts with HMGCS1 producing HMG-CoA, which is then converted to mevalonate by HMGCR, a target of statins. Cancer cells often upregulate enzymes in the mevalonate pathway (MVP) to meet their metabolic demands, leading to the development of inhibitors targeting several enzymes in this pathway. Howeve...
Yi, S. A.
•
Liang, S.
•
Rao, Y.
•
Ordureau, A.
...•
An, H.
biorxiv
Tue Jul 01 2025
E3 ligase recruitment by UBQLN2 protects substrates from proteasomal degradation
Ubiquilins are a family of proteins critical to cellular proteostasis that are also linked to several neurodegenerative diseases, with specific mutations in UBQLN2 causing dominant, X-linked ALS. Despite an initial characterization as proteasomal shuttle factors, Ubiquilins have paradoxically been reported to stabilize numerous substrates. The basis of this triage decision remains enigmatic. Many ...
Scheutzow, A.
•
Thanthirige, S.
•
Siffer, G.
•
Sorkin, A.
•
Wohlever, M. L.