2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
January 22nd, 2025
Version: 1
Institute of Plant and Microbial Biology, Academia Sinica
genomics
biorxiv

Comparative genomic analysis of a novel heat-tolerant and euryhaline strain of unicellular marine cyanobacterium Cyanobacterium sp. DS4 from a high-temperature lagoon

Chen, C.-N. N.Open in Google Scholar•Lin, K.-M.Open in Google Scholar•Lin, Y.-C.Open in Google Scholar•Chang, H.-Y.Open in Google Scholar•Yong, T. C.Open in Google Scholar•Chiu, Y.-F.Open in Google Scholar•Kuo, C.-H.Open in Google Scholar•Chu, H.-A.Open in Google Scholar

Background: Cyanobacteria have diversified through their long evolutionary history and occupy a wide range of environments on Earth. To advance our understanding of their adaption mechanisms in extreme environments, we performed stress tolerance characterizations, whole genome sequencing, and comparative genomic analyses of a novel heat-tolerant and euryhaline strain of the unicellular cyanobacterium Cyanobacterium sp. Dongsha4 (DS4). This strain was isolated from a lagoon on Dongsha Island in the South China Sea, a habitat with fluctuations in temperature, salinity, light intensity, and nutrient supply. Results: DS4 cells can tolerate long-term high-temperature up to 50 and salinity from 0 to 6.6 %, which is similar to the results previously obtained for Cyanobacterium aponinum. In contrast, most mesophilic cyanobacteria cannot survive under these extreme conditions. Based on the 16S rRNA gene phylogeny, DS4 is most closely related to Cyanobacterium sp. NBRC 102756 isolated from Iwojima Island, Japan, and Cyanobacterium sp. MCCB114 isolated from Vypeen Island, India. For comparison with strains that have genomic information available, DS4 is most similar to Cyanobacterium aponinum strain PCC 10605 (PCC10605), sharing 81.7% of the genomic segments and 92.9% average nucleotide identity (ANI). Gene content comparisons identified multiple distinct features of DS4. Unlike related strains, DS4 possesses the genes necessary for nitrogen fixation. Other notable genes include those involved in photosynthesis, central metabolisms, cyanobacterial starch metabolisms, stress tolerances, and biosynthesis of novel secondary metabolites. Conclusions: These findings promote our understanding of the physiology, ecology, evolution, and stress tolerance mechanisms of cyanobacteria. The information is valuable for future functional studies and biotechnology applications of heat-tolerant and euryhaline marine cyanobacteria.

Similar Papers

biorxiv
Thu Jul 03 2025
An Enhancement of Extrachromosomal Circular DNA Enrichment and Amplification to Address the Extreme Low Overlap Between Replicates
Extrachromosomal circular DNA (eccDNA) of chromosomal origin is commonly present in all eukaryotic organisms and tissue tested so far. EccDNA populations exhibit immense diversity and a characteristically low degree of overlap between samples, suggesting low inherence of eccDNA between cells or a deficiency the methods by which eccDNA is detected. This study revisits the Circle-seq approach for en...
Burnham, C. M.
•
Kurilung, A.
•
Wanchai, V.
•
Regenberg, B.
...•
Nookaew, I.
biorxiv
Thu Jul 03 2025
Divergence between transcriptomes and chromatin accessibility during differentiation from a bipotential progenitor cell population to erythroblasts and megakaryocytes
Changes in gene expression drive differentiation along distinct cell lineages, and these shifts in gene expression are associated with alterations in chromatin accessibility and modifications reflecting activation or repression. We used deep sequencing of polyA+ RNA to map the transcriptomes of the megakaryocyte-erythroid progenitor (MEP) and cells of its two daughter lineages, erythroblasts (ERY)...
Mishra, T.
•
Giardine, B. M.
•
Morrissey, C. S.
•
Keller, C. A.
...•
Hardison, R. C.
biorxiv
Thu Jul 03 2025
Chromatin accessibility variation provides insights into missing regulation underlying immune-mediated diseases
Most genetic loci associated with complex traits and diseases through genome-wide association studies (GWAS) are noncoding, suggesting that the causal variants likely have gene regulatory effects. However, only a small number of loci have been linked to expression quantitative trait loci (eQTLs) detected currently. To better understand the potential reasons for many trait-associated loci lacking e...
Jeong, R.
•
Bulyk, M. L.
biorxiv
Thu Jul 03 2025
NewtCap: an efficient target capture approach to boost genomic studies in Salamandridae (True Salamanders and Newts)
Salamanders have large and complex genomes, hampering whole genome sequencing. However, reduced representation sequencing provides a feasible alternative to obtain genome-wide data. We present NewtCap: a sequence capture bait set that targets c.7k coding regions across the genomes of all true salamanders and newts (the family Salamandridae, also known as salamandrids). We test the efficacy of New...
de Visser, M. C.
•
France, J.
•
McCartney-Melstad, E.
•
Bucciarelli, G. M.
...•
Wielstra, B.
biorxiv
Thu Jul 03 2025
Decoding cnidarian cell type gene regulation
Animal cell types are defined by differential access to genomic information, a process orchestrated by the combinatorial activity of transcription factors that bind to cis-regulatory elements (CREs) to control gene expression. However, the regulatory logic and specific gene networks that define cell identities remain poorly resolved across the animal tree of life. As early-branching metazoans, cni...
Elek, A.
•
Iglesias, M.
•
Mahieu, L.
•
Zolotarov, G.
...•
Sebe-Pedros, A.
biorxiv
Thu Jul 03 2025
Integrative Transcriptomic and Machine Learning Approaches to decipher Mitochondrial Gene Regulation in severe Plasmodium vivax Malaria
Mitochondria in Plasmodium vivax are functionally vital despite possessing a highly reduced genome and differing substantially from the human organelle. Beyond their classical role in energy production, they dynamically coordinate processes like pyrimidine biosynthesis and heme metabolism, adapting their functions across the intra-erythrocytic development cycle (IDC). Their unique architecture and...
Roy, P.
•
Aggarwal, Y.
•
Kochar, S. K.
•
Kochar, D. K.
•
Das, A.
biorxiv
Wed Jul 02 2025
An optimised computational approach for the identification of somatic structural variants in cancer
Structural variants play a critical role in tumorigenesis. At present, these events are most commonly identified using short-read whole-genome sequencing data, and a number of computational tools are available for this purpose. Consensus approaches have been used to improve precision, but may reduce sensitivity. The optimal number and combination of callers remains unclear, in part due to the lack...
Waise, S.
•
Mensah, N.
•
Lesluyes, T.
•
Demeulemeester, J.
...•
Van Loo, P.
biorxiv
Wed Jul 02 2025
Perplexity as a Metric for Isoform Diversity in the Human Transcriptome
Long-read sequencing (LRS) has revealed a far greater diversity of RNA isoforms than earlier technologies, increasing the critical need to determine which, and how many, isoforms per gene are biologically meaningful. To define the space of relevant isoforms from LRS, many existing analysis pipelines rely on arbitrary expression cutoffs, but a single threshold cannot accommodate the broad variabili...
Schertzer, M. D.
•
Park, S. H.
•
Su, J.
•
Sheynkman, G. M.
•
Knowles, D. A.
biorxiv
Wed Jul 02 2025
microRNA-206 is a reproducibly sensitive and specific plasma biomarker of amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease with no current therapeutic to modify disease progression. Reliable biomarkers for ALS are essential for improving diagnosis and evaluating therapeutic efficacy. We combined small-RNA sequencing from a discovery cohort of ALS patients and healthy controls with sequencing data from a previously published ALS co...
Henderson, B. W.
•
Roberts, B. S.
•
Kolodziejczak, S.
•
Cohcran, M.
•
Myers, R. M.
biorxiv
Wed Jul 02 2025
spRefine Denoises and Imputes Spatial Transcriptomics with a Reference-Free Framework Powered by Genomic Language Model
The analysis of spatial transcriptomics is hindered by high noise levels and missing gene measurements, challenges that are further compounded by the higher cost of spatial data compared to traditional single-cell data. To overcome this challenge, we introduce spRefine, a deep learning framework that leverages genomic language models to jointly denoise and impute spatial transcriptomic data. Our r...
Liu, T.
•
Huang, T.
•
Jin, W.
•
Chu, T.
...•
Zhao, H.