Small extracellular vesicles (sEVs) are heterogeneous biological vesicles released by cells under both physiological and pathological conditions. Due to their potential as valuable diagnostic and prognostic biomarkers in human blood, there is a pressing need to develop effective methods for isolating high-purity sEVs from the complex milieu of blood plasma, which contains abundant plasma proteins and lipoproteins. Size exclusion chromatography (SEC) and density gradient ultracentrifugation (DGUC) are two commonly employed isolation techniques that have shown promise in addressing this challenge. In this study, we aimed to determine the optimal combination and sequence of SEC and DGUC for isolating sEVs from small plasma volumes, in order to enhance both the efficiency and purity of the resulting isolates. To achieve this, we compared sEV isolation using two combinations: SEC-DGUC and DGUC-SEC, from unit volumes of 500 l plasma. Both protocols successfully isolated high-purity sEVs; however, the SEC-DGUC combination yielded higher sEV protein and RNA content. We further characterized the isolated sEVs obtained from the SEC-DGUC protocol using flow cytometry and mass spectrometry to assess their quality and purity. In conclusion, the optimized SEC-DGUC protocol is efficient, highly reproducible, and well-suited for isolating high-purity sEVs from small blood volumes.