Missense variants can have pleiotropic effects on protein function and predicting these effects can be difficult. We performed near-saturation deep mutational scanning of P2RY8, a G-protein-coupled receptor that promotes germinal center B cell confinement. We assayed the effect of each variant on surface expression, migration, and proliferation. We delineated variants that affected both expression and function, affected function independently of expression, and discrepantly affected migration and proliferation. We also used cryo-electron microscopy to determine the structure of activated, ligand-bound P2RY8, providing structural insights into the effects of variants on ligand binding and signal transmission. We applied the deep mutational scanning results to both improve computational variant effect predictions and to characterize the phenotype of germline variants and lymphoma-associated variants. Together, our results demonstrate the power of integrating deep mutational scanning, structure determination, and in silico prediction to advance the understanding of a receptor important in human health.