The neurotransmitter histamine is involved in control of food intake, yet its dynamics during individual feeding episodes remain unexplored. Therefore, we used the novel genetically-encoded histamine sensor, HisLightG, combined with fiber photometry to measure histamine release in two hypothalamic regions critical for the food-suppressive effects of histamine, the paraventricular nucleus of the hypothalamus (PVH), and the ventromedial hypothalamus (VMH). Male mice were tested under different conditions to assess whether hunger, time of day, or the caloric content of the solution they were given affected histamine fluctuations. We found that histamine levels changed rapidly in response to eating. These histamine fluctuations were influenced by experimental conditions, with slightly smaller responses when the test solution was sucralose (both regions) or during the light cycle (PVH only). Notable regional differences were identified, such that in the PVH histamine rebounded to baseline levels, whereas in the VMH histamine remained lower than baseline for at least 10 seconds after licking ceased. In a separate cohort of male and female mice, enhancing histamine tone via administration of a histamine precursor (L-histidine) reduced the number of licks across multiple sucrose concentrations. Together, these findings indicate that histaminergic activity is modulated rapidly during ingestive episodes, and that understanding these release patterns will give insight into histamine's role in appetite suppression.