Background: Alzheimer\'s disease (AD) is a complex neurodegenerative disorder with substantial molecular variability across different brain regions and individuals, hindering therapeutic development. This study introduces PRISM-ML, an interpretable machine learning (ML) framework integrating multiomics data to uncover patient-specific biomarkers, subtissue-level pathology, and drug repurposing opportunities. Methods: We harmonized transcriptomic and genomic data of three independent brain studies containing 2105 post-mortem brain samples (1363 AD, 742 controls) across nine tissues. A Random Forest classifier with SHapley Additive exPlanations (SHAP) identified patient-level biomarkers. Clustering further delineated each tissue into subtissues, and network analysis revealed critical \"bottleneck\" (hub) genes. Finally, a knowledge graph-based screening identified multi-target drug candidates, and a real-world pharmacoepidemiologic study evaluated their clinical relevance. Results: We uncovered 36 molecularly distinct subtissues, each defined by a set of associated unique biomarkers and genetic drivers. Through network analysis of gene-gene interactions networks, we highlighted 262 bottleneck genes enriched in synaptic, cytoskeletal, and membrane-associated processes. Knowledge graph queries identified six FDA-approved drugs predicted to target multiple bottleneck genes and AD-relevant pathways simultaneously. One candidate, promethazine, demonstrated an association with reduced AD incidence in a large healthcare dataset of over 364000 individuals (hazard ratios [≤] 0.43; p < 0.001). These findings underscore the potential for multi-target approaches, reveal connections between AD and cardiovascular pathways, and offer novel insights into the heterogeneous biology of AD. Conclusions: PRISM-ML bridges interpretable ML with multi-omics and systems biology to decode AD heterogeneity, revealing region-specific mechanisms and repurposable therapeutics. The validation of promethazine in real-world data underscores the clinical relevance of multi-target strategies, paving the way for more personalized treatments in AD and other complex disorders.