Cell-free RNA (cfRNA) profiling has emerged as a powerful tool for non-invasive disease detection, but its application is limited by data sparsity and complexity, especially in settings with constrained sample availability. We introduce Exai-1, a multi-modal, transformer-based generative foundation model that integrates RNA sequence embeddings with cfRNA abundance data to capture biologically meaningful representations of circulating RNAs. By leveraging both sequence and expression modalities, Exai-1 captures a biologically meaningful latent structure of cfRNA profiles. Pre-trained on over 306 billion tokens from 8,339 samples, Exai-1 enhances signal fidelity, reduces technical noise, and improves disease detection by generating synthetic cfRNA profiles. We show that self-attention and variational inference are particularly important for preservation of biological signals and contextual relationships. Additionally, Exai-1 facilitates cross-biofluid translation and assay compatibility through disentangling biological signals from confounders. By uniting sequence-informed embeddings with cfRNA expression patterns, Exai-1 establishes a transfer learning foundation for liquid biopsy, offering a scalable and adaptable framework for next-generation cfRNA-based diagnostics.