Insulin secretory granule (ISG) maturation is a crucial aspect of insulin secretion and glucose homeostasis. The regulation of this maturation remains poorly understood, especially how secretory stimuli affect ISG maturity and subcellular localization. In this study, we used soft X-tomography (SXT) to quantitatively map ISG morphology, density, and location in single INS-1E and mouse pancreatic {beta}-cells under the effect of various secretory stimuli. We found that the activation of glucokinase (GK), gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide-1 receptor (GLP-1R), and G-protein coupled receptor 40 (GPR40) promote ISG maturation. Each stimulus induces unique structural remodeling in ISGs, by altering size and density, depending on the specific signaling cascades activated. These distinct ISG subpopulations mobilize and redistribute in the cell altering overall cellular structural organization. Our results provide insight into how current diabetes and obesity therapies impact ISG maturation and may inform the development of future treatments that target maturation specifically.