Overexpression of checkpoint proteins, such as programmed death ligand one (PD-L1), prevents immune recognition and enables cancer growth. Current monoclonal antibodies that block PD-L1 tend to be fragile, unable to penetrate tumors, and target cancer at later stages, thus leading to inconsistent patient outcomes. Antisense oligonucleotides (ASOs) provide an alternative to decrease PD-L1 expression, but require frequent high dosing due to fast degradation, rapid clearance, and poor cell uptake. To overcome these issues, we harnessed biocompatible metal-organic framework (MOF) nanoparticles, porous nanomaterials comprising metal nodes and organic linkers, to deliver ASOs. Encapsulating ASOs into MOFs enhances their stability and protection during intracellular delivery, leading to reduced PD-L1 expression and downstream immune recognition. Herein, we synthesized three distinct PD-L1-specific ASOs and loaded them individually into zirconium-based nano-sized NU-1000 MOFs, averaging ~80% encapsulation efficiency. Release of encapsulated ASOs was sustained up to 7 days ex cellulo. MOF encapsulation increased ASO potency and reduced PD-L1 expression ~3-fold and 2-fold in triple negative breast cancer EMT6 and melanoma B16-F10 cells, respectively. We evaluated the impact of MOF-delivered ASOs on PD-L1-expressing immune cells, where we observed ca. 12-fold increases in dendritic cell co-stimulatory marker expression, and amplified T cell activation and proliferation compared to untreated cells (4-fold and 10-fold, respectively). Notably, these changes drove a 3-fold increase in tumor caspase-3 expression, a key mediator for apoptosis. This research highlights how MOFs can be harnessed to bypass ASO limitations without requiring sequence modifications, and offers a broadly applicable platform for improved oligonucleotide delivery for various genes of interest.