Gene duplication is a fundamental part of evolutionary innovation. While single-gene duplications frequently exhibit asymmetric evolutionary rates between paralogs, the extent to which this applies to multi-gene duplications remains unclear. In this study, we investigate the role of genetic context in shaping evolutionary divergence within multi-gene duplications, leveraging microsynteny to differentiate source and target copies. Using a dataset of 193 mammalian genome assemblies and a bird outgroup, we systematically analyze patterns of sequence divergence between duplicated genes and reference orthologs. We find that target copies, those relocated to new genomic environments, exhibit elevated evolutionary rates compared to source copies in the ancestral location. This asymmetry is influenced by the distance between copies and the size of the target copy. We also demonstrate that the polarization of rate asymmetry in paralogs, the \"choice\" of the slowly evolving copy, is biased towards collective, block-wise polarization in multi-gene duplications. Our findings highlight the importance of genetic context in modulating post-duplication divergence, where differences in cis-regulatory elements and co-expressed gene clusters between source and target copies may be responsible. This study presents a large-scale test of asymmetric evolution in multi-gene duplications, offering new insight into how genome architecture shapes functional diversification of paralogs.