It is widely accepted that more time and information yield better decisions. However, some decisions manage to combine speed and accuracy in an unusual way. Potentially their trick could be to use simplifying heuristics that works well for the most common condition but would lack flexibility otherwise. Here we describe an unexpected level of flexibility in a complex highspeed decision that is made faster than an Olympic sprinter can respond to the start gun. In this decision, archerfish observe the initial speed, direction, and height of falling prey and then use these initial values to turn right towards were ballistically falling prey would later land. To analyze the limits in flexibility of this highspeed decision we first developed and critically tested a system that allowed us to replace the usual ballistic relation between initial prey motion and the expected landing point with another deterministic rule. We discovered that, surprisingly, adult fish could reprogram their highspeed decision to the new rule. Moreover, after reprogramming their decision fish were immediately able to generalize their decision to novel untrained settings, showing a remarkable degree of abstraction in how the decision circuit represented the novel rule. The decision circuit is even capable of simultaneously using two distinct sets of rules, one for each of two visually distinct objects. The flexibility and level of cognition are unexpected for a decision that lacks a speed-accuracy tradeoff and is made in less than 100 ms. Our findings demonstrate the enormous potential highspeed decision making can have and strongly suggest that we presently underappreciate this form of decision making.