Genetic analyses, which examine the phenotypic effects of mutations both individually and in combination, have been fundamental to our understanding of cellular functions. Such analyses rely on a neutrality function that predicts the expected phenotype for double mutants based on the phenotypes of the two individual non-interacting mutations. In this study, we examine fitness, the most fundamental cellular phenotype, through an analysis of the extensive colony growth rate data for budding yeast. Our results confirm that the Product neutrality function describes the colony growth rate, or fitness, of a double mutant as the product of the fitnesses of the individual single mutants. This Product neutrality function performs better than additive or minimum neutrality functions, supporting its continued use in genetic interaction studies. Furthermore, we explore the mechanistic origins of this neutrality function by analyzing two theoretical models of cell growth. We perform a computational genetic analysis to show that in both models the product neutrality function naturally emerges due to the interdependence of cellular processes that maximize growth rates. Thus, our findings provide mechanistic insight into how the Product neutrality function arises and affirm its utility in predicting genetic interactions affecting cell growth and proliferation.