Translation elongation stalls trigger mRNA decay and degradation of the nascent polypeptide via translation-dependent quality control pathways. One such pathway, non-stop mRNA decay (NSD), targets aberrant mRNAs that lack stop codons for example due to premature polyadenylation. Here we identify Angel1, a CCR4 deadenylase homolog whose biochemical activity remains poorly defined, as a rate-limiting factor for NSD in human cells. Angel1 associates with mRNA coding regions and proteins involved in ribosome-associated quality control and mRNA decay, consistent with a factor that monitors translation elongation stalls. Depletion of Angel1 causes stabilization of reporter mRNAs that are targeted for NSD by the absence of stop codons, but not an mRNA targeted for nonsense-mediated decay. A conserved catalytic residue of Angel1 is critical for its function in NSD. Our findings identify Angel1 as a human NSD factor and suggest that Angel1 catalytic activity plays a critical role in the NSD pathway.