Glioblastoma (GBM) is a deadly brain cancer with near-universal recurrence despite maximal treatment for which new innovations are sorely needed. Immunotherapy has yet to make significant gains in GBM treatment despite revolutionizing other cancer therapies, due in part to GBM-mediated immune suppression. This immune derangement proceeds through several mechanisms, but increasing evidence points to critical roles for tumor-derived extracellular vesicles (EVs) and immunosuppressive myeloid cells as key factors in this process. In the present study, we demonstrate broad expression of TIGIT across myeloid cell populations in the GBM microenvironment, a finding recapitulated by conditioning healthy monocytes with GBM-derived EVs. Further, knockdown of TIGIT expression reduced the immunosuppressive polarization of monocytes, resulting in improvement in T cell function. This finding proceeded in an NLRP3-dependent manner, with substantial co-localization of TIGIT and NLRP3 expression prior to knockdown. These findings point to a novel role for TIGIT expression in diverse myeloid cells in the GBM microenvironment as a marker of immunosuppressive activity and further indicate a hierarchy of immunomodulatory protein activity in these myeloid cells, with TIGIT knockdown unmasking the pro-inflammatory activity of NLRP3. This study bolsters understanding of the immunosuppressive complexities of myeloid cells in the GBM microenvironment, while lending further support to prevention or attenuation of immunosuppressive myeloid cell activity as a means of restoring immune function in GBM.