There is a clinical need for an effective nerve guidance conduit to treat peripheral nerve injuries. Many studies have explored different materials and active cues to guide neural regeneration, with some success. However, none have demonstrated a comparable or better functional recovery than the clinical standard autograft. Autografts are often insufficient for reconstruction of an injury to long nerves such as the sciatic or brachial plexus. Synthetic nerve guidance conduits (NGCs) have been investigated for these injuries to guide axonal regeneration and lead to functional recovery. We have designed a biologics-free hydrogel-based multi-channel conduit with defined microscale features to guide axonal outgrowth. To investigate extraneural vascular infiltration and its effects on functional recovery, we also designed a multi-microchannel conduit with defined regularly spaced micropores, orthogonal to the axon guidance channels. Using our custom-built Rapid Projection, Image-guided, Dynamic (RaPID) bioprinting system, we are able to fabricate each hydrogel conduit within minutes from a milliliter-volume prepolymer vat. With our state-of-the-art printing platform, we have achieved NGCs with a consistent channel wall width of 10 microns. We implanted the NGCs for 17 weeks in a murine sciatic nerve transection injury model. We assessed the functional recovery by dynamic gait analysis throughout the recovery period and by compound muscle action potential (CMAP) electrophysiology before NGC harvesting. Both the non-porous and micro-porous conduit groups led to functional nerve regeneration on par with the autograft group. Further, both conduit groups resulted in restoration of bulk motor function to pre-injury performance.