2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
May 22nd, 2025
Version: 2
Unknown Institution
genomics
biorxiv

Functional genomic analysis of non-canonical DNA regulatory elements of the aryl hydrocarbon receptor

Shahriar, S.Open in Google Scholar•Patel, T. D.Open in Google Scholar•Nakka, M.Open in Google Scholar•Grimm, S. L.Open in Google Scholar•Coarfa, C.Open in Google Scholar•Gorelick, D. A.Open in Google Scholar

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that is activated by environmental toxicants, like halogenated and polycyclic aromatic hydrocarbons, and then binds to DNA and regulates gene expression. AHR is involved in various physiological processes, including liver and immune system function, cell cycle regulation, oncogenesis, and metabolism. In the canonical pathway, AHR binds to a consensus DNA sequence (GCGTC), termed the xenobiotic response element (XRE), recruits protein coregulators, and regulates target gene expression. Emerging evidence suggests that AHR may regulate gene expression via an additional pathway, by binding to a non-consensus DNA sequence (GGGA) termed the non-consensus XRE (NC-XRE). The prevalence of NC-XRE motifs in the genome is not known. Studies using chromatin immunoprecipitation and reporter genes provide indirect evidence of AHR-NC-XRE interactions, but direct evidence for an AHR-NC-XRE interaction that regulates transcription in a natural genomic context is lacking. Here, we analyzed AHR binding to NC-XRE DNA on a genome-wide scale in mouse liver. We integrated ChIP-seq and RNA-seq data and identified putative AHR target genes with NC-XRE motifs in regulatory regions. We found that NC-XRE motifs are present in 82% of AHR-bound DNA, which are significantly enriched relative to random genomic regions. These AHR-bound regions include, but are not limited to, promoters and enhancers of AHR target genes. To obtain direct evidence of AHR regulation via this non-canonical pathway, we performed functional genomics on the mouse Serpine1 gene, a putative AHR target via NC-XRE. Deleting NC-XRE motifs from the Serpine1 promoter reduced the upregulation of Serpine1 by TCDD, an AHR ligand. We conclude that AHR upregulates Serpine1 via NC-XRE DNA. Taken together, our results provide the first direct evidence of AHR-mediated gene regulation via NC-XRE in a natural genomic context. These findings enhance our understanding of AHR-bound DNA regions and their influence on target gene expression. Our results will also improve our ability to identify AHR target genes and their physiological relevance.

Similar Papers

biorxiv
Fri May 23 2025
A catalog of ancient proxies for modern genetic variants
The ability to observe the genomes of past human populations using ancient DNA provides an extraordinary perspective on many fundamental questions in human genetics, including understanding the evolutionary history of variants that underlie human disease and other phenotypes. However, ancient DNA is often damaged and degraded, yielding low-coverage of most nucleotides. Further, many publicly avail...
Brand, C. M.
•
Capra, J. A.
biorxiv
Fri May 23 2025
Designing DNA With Tunable Regulatory Activity Using Score-Entropy Discrete Diffusion
Designing regulatory DNA sequences with precise, cell-type-specific activity is critical for applications in medicine and biotechnology, but remains challenging due to the vast combinatorial space and complex regulatory grammar governing gene expression. Recent deep generative models---including genomic language models and diffusion-based approaches---offer new tools for sequence design, yet lack ...
Sarkar, A.
•
Kang, Y.
•
Somia, N.
•
Mantilla, P.
...•
Koo, P.
biorxiv
Fri May 23 2025
The CLAMP GA-binding transcription factor regulates heat stress-induced transcriptional repression by associating with 3D chromatin loops
To survive exposure to heat stress (HS), organisms activate stress response genes and repress constitutive gene expression, thereby preventing the accumulation of potentially toxic RNA and protein products. Although many studies have elucidated the mechanisms that drive HS-induced activation of stress response genes across species, little is known about the mechanisms that repress constitutively e...
Aguilera, J.
•
Duan, J.
•
Cortez, K.
•
Lee, R.
...•
Larschan, E.
biorxiv
Thu May 22 2025
A complete reference genome assembly and annotation of the Black Redstart (Phoenicurus ochruros)
The Black Redstart (Phoenicurus ochruros) is one of the most widely distributed species, occupying diverse habitats and exhibiting remarkable altitudinal migration, making it suitable model for studying altitudinal migration and high-altitude adaptation. In this study, we present the first reference genome of Phoenicurus ochruros, generated using PacBio HiFi long-read sequencing. The nuclear genom...
Ghimire, P.
•
Wang, N.
•
Lamichhaney, S.
biorxiv
Thu May 22 2025
Draft genome and transcriptomic sequence data of three invasive insect species
Cydalima perspectalis (the box tree moth), Leptoglossus occidentalis (the western conifer seed bug), and Tecia solanivora (the Guatemalan tuber moth) are three economically harmful invasive insect species. This study presents their genomic and transcriptomic sequences, generated through whole-genome sequencing, RNA-seq transcriptomic data, and Hi-C sequencing. The resulting genome assemblies exhib...
Lombaert, E.
•
Klopp, C.
•
Blin, A.
•
Annonay, G.
...•
Deleury, E.
biorxiv
Thu May 22 2025
Phenotypic tolerance for rDNA copy number variation within the natural range of C. elegans
The genes for ribosomal RNA (rRNA) are encoded by ribosomal DNA (rDNA), whose structure is notable for being present in arrays of tens to thousands of tandemly repeated copies in eukaryotic genomes. The exact number of rDNA copies per genome is highly variable within a species, with differences between individuals measuring in potentially hundreds of copies and megabases of DNA. The extent to whic...
Hall, A. N.
•
Morton, E.
•
Walters, R.
•
Cuperus, J. T.
•
Queitsch, C.
biorxiv
Wed May 21 2025
Inferring domestic goat demographic history through ancient genome imputation
Goats were among the earliest managed animals, making them a natural model to explore the genetic consequences of domestication. However, a challenge in ancient genomic analysis is the relatively low genome coverage for most samples, limiting analysis to pseudohaploid genotypes. Genotype imputation offers potential to alleviate this limitation by improving information content and accuracy in low c...
Erven, J. A. M.
•
Etourneau, A.
•
Mashkour, M.
•
Neupane, M.
...•
Daly, K. G.
biorxiv
Wed May 21 2025
Fusion transcription factor dosage controls cell state in rhabdomyosarcoma
In the fusion-positive subset of rhabdomyosarcoma, the PAX3::FOXO1 oncoprotein is the most common fusion driver. We previously established a human myoblast system for inducible expression of PAX3::FOXO1. In the current study, we modulate PAX3::FOXO1 protein expression to understand the epigenetic and phenotypic functions at different PAX3::FOXO1 levels. Proliferative and oncogenic outcomes depend ...
Hoffman, R. A.
•
Wang, M.
•
Sunkel, B. D.
•
Nguyen, T. H.
...•
Stanton, B. Z.
biorxiv
Wed May 21 2025
The coordination between CTCF, cohesin and TFs impacts nucleosome repositioning and chromatin insulation to define state specific 3D chromatin folding
CTCF-mediated chromatin folding plays a key role in gene regulation, however the mechanisms controlling chromatin organization across cell states are not fully elucidated. Comprehensive analyses reveal that CTCF binding stability and cohesin overlap in mice and humans, are regulated by species specific differences in CTCF binding site (CBS) accessibility and enrichment of motifs corresponding to e...
Do, C.
•
Jiang, G.
•
Cova, G.
•
Zappile, P.
...•
Skok, J. A.