2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
May 22nd, 2025
Version: 2
Zuse Institute Berlin
neuroscience
biorxiv

Semi-automatic Geometrical Reconstruction and Analysis of Filopodia Dynamics in 4D Two-Photon Microscopy Images

Brence, B.Open in Google Scholar•Brummer, J.Open in Google Scholar•Dercksen, V. J.Open in Google Scholar•Ozel, M. N.Open in Google Scholar•Kulkarni, A.Open in Google Scholar•Wolterhoff, N.Open in Google Scholar•Prohaska, S.Open in Google Scholar•Hiesinger, P. R.Open in Google Scholar•Baum, D.Open in Google Scholar

Background: Filopodia are thin and dynamic membrane protrusions that play a crucial role in cell migration, axon guidance, and other processes where cells explore and interact with their surroundings. Historically, filopodial dynamics have been studied in great detail in 2D in cultured cells, and more recently in 3D culture as well as living brains. However, there is a lack of efficient tools to trace and track filopodia in 4D images of complex brain cells. Results: To address this issue, we have developed a semi-automatic workflow for tracing filopodia in 3D images and tracking the traced filopodia over time. The workflow was developed based on high-resolution data of photoreceptor axon terminals in the in vivo context of normal Drosophila brain development, but devised to be applicable to filopodia in any system, including at different temporal and spatial scales. In contrast to the pre-existing methods, our workflow relies solely on the original intensity images without the requirement for segmentation or complex preprocessing. The workflow was realized in C++ within the Amira software system and consists of two main parts, dataset pre-processing, and geometrical filopodia reconstruction, where each of the two parts comprises multiple steps. In this paper, we provide an extensive workflow description and demonstrate its versatility for two different axo-dendritic morphologies, R7 and Dm8 cells. Finally, we provide an analysis of the time requirements for user input and data processing. Conclusion: To facilitate simple application within Amira or other frameworks, we share the source code, which is available at https://github.com/zibamira/filopodia-tool.

Similar Papers

biorxiv
Fri May 23 2025
Untamed: Unconstrained Tensor Decomposition and Graph Node Embedding for Cortical Parcellation
Cortical parcellation is fundamental to neuroscience, enabling the division of cerebral cortex into distinct, non-overlapping regions to support interpretation and comparison of complex neuroimaging data. Although extensive literature has investigated cortical parcellation and its connection to functional brain networks, the optimal spatial features for deriving parcellations from resting-state fM...
Liu, Y.
•
Li, J.
•
Wisnowski, J. L.
•
Leahy, R. M.
biorxiv
Fri May 23 2025
The association between resting state aperiodic activity and Research Domain Criteria Social Processes in young neurotypical adults
The aperiodic exponent of the electrophysiological signal has been utilised to demonstrate differences in brain excitation-inhibition in ageing, cognition, and neuro- and psycho-pathology. Furthermore, excitation-inhibition imbalance has been associated with social communication difficulties in clinical and non-clinical cohorts. No work to date, however, has explored the association between aperio...
Ford, T. C.
•
Hill, A. T.
•
Parrella, N.-F.
•
Kirkovski, M.
...•
Enticott, P. G.
biorxiv
Fri May 23 2025
Decomposition of retinal ganglion cell electrical images for cell type and functional inference
Objective: Identifying neuronal cell types and their biophysical properties based on their extracellular electrical features is a major challenge for experimental neuroscience and for the development of high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell (RGC) types and their visual response properties, which is fundamental for developing future electro...
Wu, E. G.
•
Rudzite, A. M.
•
Bohlen, M. O.
•
Li, P. H.
...•
Chichilnisky, E. J.
biorxiv
Fri May 23 2025
Early Indirect Neurogenesis transitions to late Direct Neurogenesis in mouse cerebral cortex development
The cerebral cortex must contain the appropriate numbers of neurons in each layer to acquire its proper functional organization. Accordingly, neurogenesis requires precise regulation along development. Cortical neurons are made either directly by Radial Glia Cells (RGCs) that self-consume, or indirectly from RGCs via Intermediate Progenitor Cells (IPCs) and largely preserving the RGC pool. Accordi...
Cardenas, A.
•
Celik, I.
•
Espinos, A.
•
Streicher, C.
...•
Borrell, V.
biorxiv
Fri May 23 2025
Diencephalic and white matter knock-on effects in hippocampal amnesia - why they matter
Studies of brain-behaviour relationships in hippocampal amnesia largely ignore the presence and explanatory potential of knock-on effects beyond the medial temporal lobes. In a large cohort of patients (n=38) with hippocampal damage due to autoimmune limbic encephalitis, we had reported evidence that extra-hippocampal structural and functional abnormalities in the broader hippocampal-diencephalic-...
Argyropoulos, G. P. D.
•
Aggleton, J. P.
•
Butler, C. R.
biorxiv
Fri May 23 2025
A two-dimensional space of linguistic representations shared across individuals
Our ability to extract meaning from linguistic inputs and package ideas into word sequences is supported by a network of left-hemisphere frontal and temporal brain areas. Despite extensive research, previous attempts to discover differences among these language areas have not revealed clear dissociations or spatial organization. All areas respond similarly during controlled linguistic experiments ...
Tuckute, G.
•
Lee, E. J.
•
Ou, Y.
•
Fedorenko, E.
•
Kay, K.
biorxiv
Fri May 23 2025
GABAergic signaling by VIP interneurons gates running-dependent visual recovery in the adult brain
Experience-dependent plasticity in the adult visual cortex is enhanced by locomotion, a process mediated by vasoactive intestinal peptide (VIP)-expressing interneurons. While VIP interneurons are known to signal through both Gamma-aminobutyric acid (GABA) and VIP peptide, the specific contributions of these pathways during different forms of plasticity remain unclear. Monocular deprivation (MD) in...
Lebedeva, A.
•
Kling, F.
•
Rakela, B.
•
Stryker, M. P.
•
Sun, Y. J.
biorxiv
Fri May 23 2025
The shape of attention: How cognitive goals sculpt cortical representation of speech.
Perception requires more than passive sensing--it involves prioritizing the features most relevant to ongoing cognitive goals, a process guided by selective attention. A central question is whether attention operates by enhancing all features of a selected target, or by optimizing neural encoding around the specific demands of the task--i.e., is selective attention fundamentally anchored around ta...
Huet, M.-P.
•
Elhilali, M.
biorxiv
Fri May 23 2025
A complex acoustical environment is necessary for maintenance and development in the zebra finch auditory pallium
Postnatal experience is critical to auditory development in vertebrates. The zebra finch (Taeniopygia castanotis) provides a valuable model for understanding how complex social-acoustical environments influence development of the neural circuits that support perception of vocal communication signals. We previously showed that zebra finches raised in the rich acoustical environment of a breeding co...
Moseley, S. M.
•
Meliza, C. D.
biorxiv
Thu May 22 2025
SPONTANEOUS VISUAL IMAGERY DURING EXTENDED MUSIC LISTENING IS ASSOCIATED WITH RELIABLE ALPHA SUPPRESSION
Music is widely recognised as being able to evoke images in the mind\'s eye. However, the neural basis of visual imagery experiences during music listening remains poorly understood. Here, we combined probe-caught experience sampling methodology with 32-channel electroencephalography (EEG) recordings in order to investigate the neuro-oscillatory correlates of music-evoked visual imagery and examin...
Hashim, S.
•
Omigie, D.