2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
May 22nd, 2025
Version: 1
Georgia State University
neuroscience
biorxiv

Brain State Convergence and Divergence as Resting State FMRI Biomarkers: A Large-Scale Study of Continuous, Overlapping, Time-resolved States Differentiates Four Psychiatric Disorders

Soleimani, N.Open in Google Scholar•Wiafe, S.-L.Open in Google Scholar•Iraji, A.Open in Google Scholar•Pearlson, G. D.Open in Google Scholar•Calhoun, V.Open in Google Scholar

Identifying biomarkers- objective, quantifiable biologically-based measures to complement traditional clinical assessments- is critical for studying the links between brain and disorders. Recent advances in neuroimaging have shifted biomarker discovery from traditional univariate brain mapping techniques, which analyze individual brain regions separately, to multivariate predictive models that consider complex patterns across multiple regions, with dynamic functional network connectivity (dFNC) emerging as a key approach offering a dynamic view of the temporal coupling between different brain networks. Here, we introduce an innovative approach to estimate dynamic double functional independent primitives (ddFIP) by first applying a spatially constrained independent component analysis (ICA) to derive intrinsic connectivity networks (ICNs), followed by a second ICA applied to dFNC matrices. This procedure provides a set of states that reflect dynamic connectivity patterns. To characterize these states, we propose several dynamic measures: (1) amplitude convergence, which quantifies the extent to which multiple states contribute similarly to the connectivity profile at a given time (indicating more uniform state contributions); (2) amplitude divergence, quantifying the tendency for states to contribute at varying levels which does not assume dominance but rather reflects a spread of amplitudes across states; as well as (3) dynamic state density which shows the number of strongly occupied states, reflecting the brains preference for spending time in a smaller or larger set of dominant states. We apply this approach to uncover ddFIP-based biomarkers from seven resting-state functional magnetic resonance imaging (rs-fMRI) clinical datasets, which include four neuropsychiatric disorders- schizophrenia (SCZ), autism spectrum disorder (ASD), major depressive disorder (MDD), and bipolar disorder (BPD)- comprising a total of 5,805 participants. Our results revealed disorder-specific patterns in dynamic connectivity measures. SCZ exhibited widespread disruptions with high variability and increased divergence, suggesting a tendency for states to contribute at varying levels rather than uniformly. ASD, in contrast, showed significantly reduced divergence and increased convergence, indicating more uniform contributions across states and atypical stability in dynamic connectivity. BPD demonstrated heightened variability, particularly in mood regulation networks, while MDD displayed moderate disruptions, especially in self-referential processing networks. Notably, ASDs increased state convergence reflects a pattern where state weights are more similar, was sharply distinct from SCZs increased divergence, as indicated by state occupancy measures. In sum, our findings highlight the potential of continuous dFNC as a FNC-based biomarker to capture disorder-specific connectivity signatures. Moreover, by analyzing both the convergence and divergence of dynamic states, we capture a detailed view of connectivity, reflecting the brains adaptability and resilience within each disorder.

Similar Papers

biorxiv
Fri May 23 2025
Early Indirect Neurogenesis transitions to late Direct Neurogenesis in mouse cerebral cortex development
The cerebral cortex must contain the appropriate numbers of neurons in each layer to acquire its proper functional organization. Accordingly, neurogenesis requires precise regulation along development. Cortical neurons are made either directly by Radial Glia Cells (RGCs) that self-consume, or indirectly from RGCs via Intermediate Progenitor Cells (IPCs) and largely preserving the RGC pool. Accordi...
Cardenas, A.
•
Celik, I.
•
Espinos, A.
•
Streicher, C.
...•
Borrell, V.
biorxiv
Fri May 23 2025
GABAergic signaling by VIP interneurons gates running-dependent visual recovery in the adult brain
Experience-dependent plasticity in the adult visual cortex is enhanced by locomotion, a process mediated by vasoactive intestinal peptide (VIP)-expressing interneurons. While VIP interneurons are known to signal through both Gamma-aminobutyric acid (GABA) and VIP peptide, the specific contributions of these pathways during different forms of plasticity remain unclear. Monocular deprivation (MD) in...
Lebedeva, A.
•
Kling, F.
•
Rakela, B.
•
Stryker, M. P.
•
Sun, Y. J.
biorxiv
Fri May 23 2025
Untamed: Unconstrained Tensor Decomposition and Graph Node Embedding for Cortical Parcellation
Cortical parcellation is fundamental to neuroscience, enabling the division of cerebral cortex into distinct, non-overlapping regions to support interpretation and comparison of complex neuroimaging data. Although extensive literature has investigated cortical parcellation and its connection to functional brain networks, the optimal spatial features for deriving parcellations from resting-state fM...
Liu, Y.
•
Li, J.
•
Wisnowski, J. L.
•
Leahy, R. M.
biorxiv
Fri May 23 2025
The shape of attention: How cognitive goals sculpt cortical representation of speech.
Perception requires more than passive sensing--it involves prioritizing the features most relevant to ongoing cognitive goals, a process guided by selective attention. A central question is whether attention operates by enhancing all features of a selected target, or by optimizing neural encoding around the specific demands of the task--i.e., is selective attention fundamentally anchored around ta...
Huet, M.-P.
•
Elhilali, M.
biorxiv
Fri May 23 2025
Diencephalic and white matter knock-on effects in hippocampal amnesia - why they matter
Studies of brain-behaviour relationships in hippocampal amnesia largely ignore the presence and explanatory potential of knock-on effects beyond the medial temporal lobes. In a large cohort of patients (n=38) with hippocampal damage due to autoimmune limbic encephalitis, we had reported evidence that extra-hippocampal structural and functional abnormalities in the broader hippocampal-diencephalic-...
Argyropoulos, G. P. D.
•
Aggleton, J. P.
•
Butler, C. R.
biorxiv
Fri May 23 2025
A two-dimensional space of linguistic representations shared across individuals
Our ability to extract meaning from linguistic inputs and package ideas into word sequences is supported by a network of left-hemisphere frontal and temporal brain areas. Despite extensive research, previous attempts to discover differences among these language areas have not revealed clear dissociations or spatial organization. All areas respond similarly during controlled linguistic experiments ...
Tuckute, G.
•
Lee, E. J.
•
Ou, Y.
•
Fedorenko, E.
•
Kay, K.
biorxiv
Fri May 23 2025
The association between resting state aperiodic activity and Research Domain Criteria Social Processes in young neurotypical adults
The aperiodic exponent of the electrophysiological signal has been utilised to demonstrate differences in brain excitation-inhibition in ageing, cognition, and neuro- and psycho-pathology. Furthermore, excitation-inhibition imbalance has been associated with social communication difficulties in clinical and non-clinical cohorts. No work to date, however, has explored the association between aperio...
Ford, T. C.
•
Hill, A. T.
•
Parrella, N.-F.
•
Kirkovski, M.
...•
Enticott, P. G.
biorxiv
Fri May 23 2025
Decomposition of retinal ganglion cell electrical images for cell type and functional inference
Objective: Identifying neuronal cell types and their biophysical properties based on their extracellular electrical features is a major challenge for experimental neuroscience and for the development of high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell (RGC) types and their visual response properties, which is fundamental for developing future electro...
Wu, E. G.
•
Rudzite, A. M.
•
Bohlen, M. O.
•
Li, P. H.
...•
Chichilnisky, E. J.
biorxiv
Fri May 23 2025
A complex acoustical environment is necessary for maintenance and development in the zebra finch auditory pallium
Postnatal experience is critical to auditory development in vertebrates. The zebra finch (Taeniopygia castanotis) provides a valuable model for understanding how complex social-acoustical environments influence development of the neural circuits that support perception of vocal communication signals. We previously showed that zebra finches raised in the rich acoustical environment of a breeding co...
Moseley, S. M.
•
Meliza, C. D.
biorxiv
Thu May 22 2025
Face-, color-, and word-specific patches in the human orbitofrontal cortex
The human ventral occipitotemporal cortex (VOTC) contains multiple category-specific areas, organized along posterior-to-anterior and medial-to-lateral axes. However, the role of regions beyond the VOTC in category-specific processing remains less explored. Here, we report the presence of face-, color- and word-specific patches in the human orbitofrontal cortex (OFC) and systematically describe th...
Liu, J.
•
Cohen, L.
•
Zhan, M.
•
Bartolomeo, P.