Colitis-associated cancer (CAC) arises from a complex interplay between host and environmental factors, including the gut microbiome. Since ulcerative colitis (UC), a significant risk factor for CAC, is rising in prevalence worldwide, an integrative approach is essential to identify potential triggers linking inflammation to cancer. In the present study, we investigated the role of the gut microbiome using Winnie mice, a UC-like model with a relevant missense mutation in the Muc2 gene. Upon transfer from a conventional (CONV) to a specific-pathogen-free (SPF) facility, Winnie mice exhibited a more severe colitis phenotype, and notably, spontaneous CAC as early as four weeks of age, which progressively worsened over time. In contrast, CONV Winnie developed only mild colitis but with no overt signs of tumorigenesis. Notably, when rederived into germ-free (GF) conditions, SPF Winnie mice were protected from colitis or colon tumor development, indicating an essential role for the gut microbiome in the initiation and progression of CAC in these mice. Using shotgun metagenomics, metabolomics, and lipidomics, we identified a distinct pro-inflammatory microbial and metabolic signature that potentially drives the transition from colitis to CAC. Fecal microbiota transplantation (FMT), using either SPF Winnie or WT (Bl/6) donors into GF Winnie recipients, demonstrated that while colitis developed regardless of donor, only FMT from SPF Winnie donors resulted in CAC, revealing a microbiota-driven, host-specific susceptibility to tumorigenesis in Winnie mice. Our studies present a novel and relevant model of CAC, providing further evidence that the microbiome plays a key role in the pathogenesis of CAC, thereby challenging the concept of colon cancer as a strictly non-transmissible disease.