2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
June 6th, 2025
Version: 1
Corteva Agriscience
plant biology
biorxiv

Spatial and single-cell transcriptomics capture two distinct cell states in plant immunity

Hu, Y.Open in Google Scholar•Schaefer, R.Open in Google Scholar•Rendleman, M.Open in Google Scholar•Slattery, A.Open in Google Scholar•Cramer, A.Open in Google Scholar•Nahiyan, A.Open in Google Scholar•Breitweiser, L.Open in Google Scholar•Shah, M.Open in Google Scholar•Kaehler, E.Open in Google Scholar•Yao, C.Open in Google Scholaret al.

Unlike animals, plants are sessile organisms that must adapt to localized and fluctuating environmental stimuli, including abiotic and biotic stresses. While animals use mobile immune cells to eliminate pathogens, plants rely on localized cells in contact with the pathogen to detect and mount immune responses. Although bulk RNA sequencing (RNA-seq) has enabled the assessment of plant responses to pathogen infection at the whole transcriptome level, the spatial coordination of plant immune responses remains elusive. In this study, we performed both spatial and single-nuclei transcriptomic experiments to capture the spatial pattern of soybean plant responses to Asian soybean rust infection caused by the pathogen Phakopsora pachyrhizi. Through the analysis of both spatial and single-nuclei transcriptomics data, we identified two distinct host cell states with specific spatial localization in response to pathogen infection: the infected regions with the presence of the pathogen and the surrounding regions bordering the infected regions. Importantly, the surrounding regions exhibited higher expression of defense response-related genes than the infected regions, despite having minimal presence of the pathogen, indicating a cell non-autonomous defense response in the surrounding regions. Additionally, gene co-expression network analysis with single-cell resolution identified a key immune response-related gene module activated in the stressed cells captured in our single-nuclei RNA-seq data. This study reveals the intricate spatial coordination of plant defense responses against pathogen infection and enhances our understanding of the importance of localized cell non-autonomous defense responses in plant-pathogen interactions.

Similar Papers

biorxiv
Fri Jun 06 2025
Endophytes induce systemic spatial reprogramming of metabolism in poplar roots under drought
Beneficial endophytes help plants thrive in challenging environments by altering their host\'s metabolism, but how these cellular scale metabolic changes propagate to the systems biology scale is unknown. In this work, we employed a high-resolution chemical imaging approach to map metabolic changes at the root zone and cell type levels and found that a 9-strain consortium of beneficial endophytes ...
Aufrecht, J. A.
•
Velickovic, D.
•
Tournay, R.
•
Couvillion, S. P.
...•
Ahkami, A. H.
biorxiv
Fri Jun 06 2025
Characterization of FLOWERING LOCUS T related genes and their putative gene regulatory network in semi-winter Brassica napus cultivar Zhongshaung11
In many species, FLOWERING LOCUS T (FT)-like genes promote the floral transition by integrating environmental signals, in particular photoperiod, and internal cues. Here we show that Brassica napus contains 6 FT-like genes and 2 pseudogenes belonging to 3 orthogroups. All B. napus FT-like genes induce early flowering when expressed at the shoot apical meristems of Arabidopsis thaliana ft mutants, ...
Wang, J.
•
Zhou, H.-R.
•
Taenzler, P.
•
Ding, N.
...•
Turck, F. K.
biorxiv
Fri Jun 06 2025
Evolutionary origin and functional diversification of plant GBF1-type ARF guanine-nucleotide exchange factors
Large ARF GTPase-activating guanine-nucleotide exchange factors (ARF-GEFs) are essential regulators of membrane trafficking across the eukaryotes. Although conserved, the GBF1-type ARF-GEFs underwent plant-specific evolution. Of the 3 paralogs in Arabidopsis thaliana, AtGNOM-LIKE1 (AtGNL1) performs the GBF1 task of retrograde Golgi-ER traffic whereas AtGNOM mediates polar recycling from endosomes ...
Singh, M. K.
•
Lauster, T.
•
Huhn, K.
•
Richter, S.
...•
Juergens, G.
biorxiv
Fri Jun 06 2025
A workflow for absolute apoplastic pH assessment during live cell imaging in plant roots.
Apoplastic pH is a key regulator of plant development and environmental responses, influencing processes such as cell expansion, nutrient uptake, and intercellular signaling. Accurate tools for measuring absolute pH values at high spatial resolution are therefore essential, yet limiting. Here, we present a novel calibration-based workflow for the in vivo quantification of absolute apoplastic pH us...
Roessling, a.-k.
•
mayle, n.
•
Barbez, E.
biorxiv
Fri Jun 06 2025
Fitting photosynthetic carbon dioxide and irradiance response curves for C4 leaves
Gas exchange measurements provide crucial insights into the complex mechanisms of photosynthesis. Responses of CO2 assimilation rate (A) to intercellular CO2 partial pressure (Ci) and irradiance (I) link gas exchange measurements to the underlying photosynthetic biochemistry of a leaf. The unique biochemistry and leaf anatomy which distinguish C4 photosynthesis make it necessary to apply models an...
Woodford, R.
•
Ermakova, M.
•
Furbank, R. T.
•
von Caemmerer, S.
biorxiv
Fri Jun 06 2025
FLOE1 maintains cellular viscosity in rehydrating Arabidopsis embryos
Most plant embryos can survive for years in a dry state of less than 10% water(1). Rehydration during seed germination is critical but risky, too little environmental water can dehydrate and kill the developing embryo. Plants avoid this by germinating only when sufficient water is present. However, the mechanisms by which sufficient water is sensed and how it triggers germination remain unknown. F...
Field, S.
•
Ramirez, J. F.
•
Dorone, Y.
•
Cox, J. A.
...•
Rhee, S. Y.
biorxiv
Fri Jun 06 2025
Redesigning petal shape, size, and color in soybean reveals unexpected phenotypes for floral organ development
Soybean (Glycine max) has not yet benefited from large-scale hybrid breeding efforts due to its small, self-fertilizing flowers that are difficult to emasculate and limited attractiveness to pollinators. This study explores targeted floral trait engineering to enhance pollinator attraction, aiming to overcome barriers to soybean hybridization. We generated a high-resolution floral organ expression...
Szeluga, N.
•
AlBader, N.
•
Pelletier, S.
•
Weis, K.
...•
Frank, M.
biorxiv
Fri Jun 06 2025
Unraveling the cis-regulatory code controlling abscisic acid-dependent gene expression in Arabidopsis using deep learning
Abscisic acid (ABA) is a key regulator of abiotic stress responses in plants. Understanding the regulation of ABA-dependent gene expression is key to uncovering how plants adapt to environmental stress and how their resilience can be improved. We explored gene expression regulation by ABA in Arabidopsis thaliana through the training of an interpretable deep learning model predicting ABA responsive...
Opdebeeck, H.
•
Smet, D.
•
Thierens, S.
•
Minne, M.
...•
Vandepoele, K.
biorxiv
Fri Jun 06 2025
Constitutive expression of full-length or partial of SOC1 genes for yield enhancement in tomato
Manipulating the expression of flowering pathway genes holds potential for regulating tomato fruit productivity. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a MADS-box gene that serves as a key integrator in the flowering pathway. In this study, two full-length SOC1 genes cloned from maize (ZmSOC1) and soybean (GmSOC1), along with a partial SOC1 gene from blueberry (VcSOC1K, containing th...
Danial, G. H.
•
Jaikham, J.
•
Song, G.-q.