Necrosis, conventionally thought of as a passive consequence of aggressive tumor growth, is associated with poor prognosis in colorectal cancer (CRC). We recently discovered that necrosis can be caused by neutrophil extracellular trap (NET) aggregates driving vascular occlusion within the tumor vasculature in models of breast cancer. Here, we evaluated the role of NETs in inducing necrosis and metastasis in CRC. We found that the numbers of neutrophils primed to form NETs were elevated in the circulation of patients with CRC as compared to controls. CD177Low neutrophils were also elevated, and they showed reduced extravasation capacity with intact ability to form NETs. The extent of necrosis correlated with metastasis (stage IV disease), independent of tumor size, in our human cohort. In both human and murine CRC tumors, necrotic regions were characterized by neutrophil infiltration and NET accumulation, and NET aggregates were observed in the vasculature next to the necrotic regions. Single cell RNA sequencing and spatial transcriptomic analysis of human CRC and liver metastases revealed that necrotic tumors activate pathways associated with increased metastatic potential, including epithelial-to-mesenchymal-transition. Using a mouse model of DNA mismatch repair proficient CRC, we found neutrophil infiltration and NETs increased with tumor progression. Genetic or pharmacological inhibition of NET formation decreased necrosis and metastasis, and importantly enhanced chemotherapy efficacy. Altogether, our findings show that NET formation in human CRC is a key feature of tumor necrosis and it is associated with metastasis, and further suggest that preventing NET formation may offer clinical benefits to CRC patients.