CRISPR-based nucleic acid diagnostics are a promising class of point-of-care tools that could dramatically improve healthcare outcomes for millions worldwide. However, these diagnostics require nucleic acid pre-amplification, an additional step that complicates deployment to low resource settings. Here, we developed CATNAP (Cas trans-nuclease detection of amplified products), a method that integrates isothermal linear DNA amplification with Cas12a detection in a single reaction. CATNAP uses a nicking enzyme and DNA polymerase to continuously generate single-stranded DNA, activating Cas12a\'s trans-cleavage activity without damaging the template. We optimized enzyme combinations, buffer conditions, and target selection to achieve high catalytic efficiency. CATNAP successfully distinguished between high- and low-risk HPV strains and detects HPV-16 in a cervical cancer crude cell lysate at room temperature with minimal equipment, offering advantages over PCR-based approaches. We conclude that CATNAP bridges the sensitivity gap in CRISPR diagnostics while maintaining simplicity, making accurate disease detection more accessible in resource-limited settings.