2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
July 3rd, 2025
Version: 1
JIS University, Kolkata, India
bioinformatics
biorxiv

In Silico Investigation Reveals a Potential Functional Role for Human Microbiome in Chronic Obstructive Pulmonary Disease

Jana, N.Open in Google Scholar•Dhara, O.Open in Google Scholar•Bhattacharya, S. S.Open in Google Scholar

Chronic Obstructive Pulmonary Disease (COPD) is a progressive enervating lung disease characterized by chronic inflammation, airway inhibition and unrecoverable structural damage to the lungs. While traditionally associated with environmental factors similar as cigarette smoke and air pollution as well as genetic factors, recent revelations has increasingly indicative of the role of microbiomes in the modulation of this disease. This study explores the structural and functional relations between microbial proteins and human proteins involved in COPD using in-silico bioinformatic tools. Several critical human proteins involved in COPD pathogenesis such as MMP 1, MMP 2, MMP 14, TNF-, TGF-{beta} were evaluated for the presence of microbial homologous proteins using BLAST analysis in the microbial database. The results revealed significant structural homology with microbial proteins from species including E. coli, K.pneumonia, Bacillus thuringiensis, Bifidobacterium samirii. This microbial protein may impact COPD progression through mechanisms similar as molecular belittlement and modulation of host vulnerable responses. Further molecular docking simulations were conducted using herbal drugs (oleanolic acid, gingerol, nobiletin, menthol among others) known for their anti-inflammatory effect and can be potentially used in the treatment of COPD. Results demonstrated favourable interactions between these composites and both human and microbial proteins, indicating therapeutic potential of the compounds. For case oleanolic acid showed strong interaction with TNF-- and its microbial homolog while menthol effectively interacted with MMP-14 and its bacterial counterparts. Also phylogenetic tree construction using Clustal Omega handed perceptivity into the evolutionary connections between the bacteria hosting homologous proteins, suggesting possible ancestral links and participated functional pathway applicable to COPD pathology . The finding emphasize the possibility of microbiome deduced proteins to act as modifiers in COPD progression as well as the therapeutic potential of the herbal compounds in targeting both host and microbial factors, which need to be further ascertained by in vitro , in vivo, as well as clinical studies. This novel in silico approach offers a unique prospective on COPD treatment by integrating microbiome and phytotherapy laying the groundwork for future personalized therapeutic strategies targeting both microbial and host inflammatory pathways.

Similar Papers

biorxiv
Thu Jul 03 2025
Human protein interactome structure prediction at scale with Boltz-2
In humans, protein-protein interactions mediate numerous biological processes and are central to both normal physiology and disease. Extensive research efforts have aimed to elucidate the human protein interactome, and comprehensive databases now catalog these interactions at scale. However, structural coverage of the human protein interactome is limited and remains challenging to resolve through ...
Ille, A. M.
•
Markosian, C.
•
Burley, S. K.
•
Pasqualini, R.
•
Arap, W.
biorxiv
Thu Jul 03 2025
Foundation Model Attributions Reveal Shared Inflammatory Program Across Diseases
Determining a gene's functional significance within a specific cellular context has long been a challenge. We introduce a framework for quantifying gene importance by leveraging attributions learned by foundation models (FMs) trained on large corpora of single-cell RNA-sequencing (scRNA-seq) datasets. Attribution scores robustly quantify gene importance across datasets, emphasizing key genes in re...
Gold, M. P.
•
Reyes, M.
•
Diamant, N.
•
Kuo, T.
...•
Biancalani, T.
biorxiv
Thu Jul 03 2025
Hybrid Generative Model: Bridging Machine Learning and Biophysics to Expand RNA Functional Diversity
Functional RNAs perform diverse catalytic roles, yet natural sequences represent only a narrow subset of what is possible. Rediscovering such activities requires exploring functional sequence diversity beyond natural RNAs. We introduce a Bayesian hybrid generative model that combines a coevolutionary likelihood with an RNA secondary structure prior. This approach disentangles folding constraints f...
Opuu, V.
biorxiv
Thu Jul 03 2025
Allosteric Site Prediction Using Protein Language Models and Orthosteric Conditioning
Allosteric modulators as therapeutics offer many advantages over orthosteric modulators, including improved selectivity and tunability. However, identifying and characterising allosteric sites remains a major challenge both experimentally and computationally. Accurate prediction of allosteric binding sites is critical to facilitate allosteric drug discovery. Here, we evaluate three strategies to p...
Eccleston, R. C.
•
Furnham, N.
biorxiv
Thu Jul 03 2025
tugMedi: simulator of cancer-cell evolution for personalized medicine based on the genomic data of patients
Cancer comprehensive genomic profiling tests are increasingly used, but drug response rates remain limited. Simulations forecasting cancer progression could aid targeted therapies; however, existing simulations focus mainly on basic biology. We present tugMedi, a cancer-cell evolution simulator designed for cancer genome medicine. By integrating patient-specific genomic and imaging data, tugMedi r...
Nagornov, I.
•
Furukawa, E.
•
Nagai, M.
•
Yagishita, S.
...•
Kato, M.
biorxiv
Thu Jul 03 2025
Amino acid exchangeability and surface accessibility underpin the effects of single substitutions
Deep mutational scans have measured the effects of many mutations on many different proteins. Here we use a collection of such scans to perform a statistical meta-analysis of the effects of single amino acid substitutions. Specifically, we model the relative deleteriousness of each substitution in each deep mutational scan with respect to the identities of the wildtype and mutant residues, and the...
Alpay, B. A.
•
Nanda, P.
•
Nagy, E.
•
Desai, M. M.
biorxiv
Thu Jul 03 2025
CLONEID: A Framework for Longitudinal Integration of Phenotypic and Genotypic Data to Monitor and Steer Subclonal Dynamics
Understanding how genetic and phenotypic diversity emerges and evolves within cancer cell populations is a fundamental challenge in cancer biology. CLONEID is a novel framework designed to organize and analyze clone-specific measures as structured time-series data. By integrating and monitoring genotypic and phenotypic experimental data over time, CLONEID facilitates hypothesis-driven and hypothes...
Veith, T.
•
Beck, R. J.
•
Tagal, V.
•
Li, T.
...•
Andor, N.
biorxiv
Wed Jul 02 2025
Inferring metabolite states from spatial transcriptomes using multiple graph neural network
Metabolism serves as the pivotal interface connecting genotype and phenotype in various contexts, such as cancer reprogramming and immune metabolic reprogramming. Compared to the transcriptome, the development of the single-cell metabolome faces significant challenges. While various methods exist for predicting metabolite levels from transcriptome, their efficacy remains limited. We developed an e...
Jiaxu, L.
•
Daosheng, A.
•
Sun, W.
biorxiv
Wed Jul 02 2025
hoodscanR: profiling single-cell neighborhoods in spatial transcriptomics data
Understanding complex cellular niches and neighborhoods have provided new insights into tissue biology. Thus, accurate neighborhood identification is crucial, yet existing methodologies often struggle to detect informative neighborhoods and generate cell-specific neighborhood profiles. To address these limitations, we developed hoodscanR, a Bioconductor package designed for neighborhood identifica...
Liu, N.
•
Martin, J.
•
Bhuva, D. D.
•
Chen, J.
...•
Davis, M. J.