Coordinated motor behavior emerges from information flow across brain regions. How long-range inputs drive cell-type-specific activity within motor circuits remains unclear. The dorsolateral striatum (DLS) contains direct- and indirect-pathway medium spiny neurons (dMSNs and iMSNs) with distinct roles in movement control. In mice performing skilled locomotion, we recorded from dMSNs, iMSNs, and their cortical and thalamic inputs identified by monosynaptic rabies tracing. An RNN classifier and clustering analysis revealed functionally heterogeneous subpopulations in each population, with dMSNs preferentially activated at movement onset and offset, and iMSNs during execution. Cortical and thalamic inputs were preferentially activated during onset/offset and execution, respectively, though dMSN- and iMSN-projecting neurons in each region showed similar patterns. Locomotion phase-specific rhythmic activity was found in a subset of thalamic dMSN-projecting neurons and dMSNs. Cortex or thalamus inactivation reduced MSN activity. These findings suggest that corticostriatal and thalamostriatal inputs convey complementary motor signals via shared and cell-type-specific pathways.