Antibiotic treatment is often necessary to eliminate life-threatening bacterial infections. However, these treatments can alter production of bacterial extracellular vesicles (BEVs), which often contain pro-inflammatory biomolecules. In this study, we examined how the clinically-relevant antibiotics meropenem, tobramycin, and ciprofloxacin impacted BEV production from a urinary tract infection-associated Escherichia coli strain (CFT073 [WAM2267]) and a meningitis-associated strain (K1 RS218). BEVs from both strains caused a dose-dependent increase in expression of intercellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells, priming the endothelium for interactions with immune cells. Blockade of toll-like receptor 4 revealed that this receptor was responsible for BEV-endothelial interactions. Treatment with meropenem, a {beta}-lactam antibiotic, increased production of BEVs from strain K1 RS218. Furthermore, meropenem treatment caused strain CFT073 [WAM2267] to produce BEVs with heightened stimulatory capacity, possibly by amplifying the content of lipoprotein Lpp in these BEVs as measured by mass spectrometry. To our knowledge, this is the first study examining the interplay between antibiotic treatment and the effects of the resulting BEVs on endothelial ICAM-1 expression. Our results indicate treatment risks of certain antibiotics against specific strains of E. coli and could help identify therapeutic targets to reduce BEV-mediated endothelial stimulation during infection.