Maintaining transcriptional fidelity is essential for precise gene regulation and genome stability. Despite this, cryptic antisense transcription, occurring opposite to canonical coding sequences, is a pervasive feature across all domains of life. How such potentially harmful cryptic sites are regulated remains incompletely understood. Here, we show that nucleosome arrays within gene bodies play a key role in suppressing cryptic transcription. Using the fission yeast Schizosaccharomyces pombe as a model, we demonstrate that CHD1-family chromatin remodelers coordinate with the transcription elongation machinery, specifically the PAF complex, to position nucleosomes at sites of cryptic transcription initiation within gene bodies. In the absence of CHD1, AT-rich sequences within gene bodies lose nucleosome occupancy, exposing promoter-like sequences that drive cryptic initiation. While cryptic transcription is generally detrimental, we identify a subset of antisense transcripts that encode critical meiotic genes, suggesting that cryptic transcription can also serve as a source of regulatory innovation. These findings underscore the essential role of nucleosome remodelers in maintaining transcriptional fidelity and reveal their broader contributions to cellular homeostasis and evolutionary adaptability.