2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
September 1st, 2025
Version: 1
GeneAura Private Limited
biochemistry
bioRxiv

Early Transcriptomic Signatures of Reductive Stress Cardiomyopathy Reveal Insufficient HIF-1 Signaling

Mavillapalli, R. C.Open in Google Scholar•Dakshina Moorthy, J.Open in Google Scholar•Ravi, Y.Open in Google Scholar•Namakkal-Soorappan, R.Open in Google Scholar

Chronic activation of Nrf2-regulated antioxidant pathways can lead to a pathological condition known as reductive stress (RS). While transient Nrf2 activation confers protection against oxidative stress, its sustained stimulation may provoke maladaptive responses in high-energy-demanding organs such as the heart. In this study, we employed a cardiac-specific constitutively active Nrf2 transgenic (CaNrf2-TG) mouse model to characterize early transcriptomic alterations associated with the transition from compensated cardiac function to pathological remodeling. Myocardial RNA sequencing at 12 weeks of age, a critical window preceding overt cardiac dysfunction, revealed widespread dysregulation of antioxidants, immune, metabolic, proteostasis, and stress-response pathways. Notably, genes related to HIF-1 signaling, PI3K-Akt, MAPK, and hypertrophic cardiomyopathy were significantly altered. Functional enrichment analysis highlighted upregulation of detoxification enzymes and stress response regulators, alongside downregulation of ER chaperones, calcium-handling proteins, and MHC-II immune mediators. Furthermore, perturbations in metabolic flexibility and sarcomeric gene expression suggest early disruption of structural and energy-regulating networks. These findings uncover early molecular signatures of Nrf2-driven RS cardiomyopathy and may aid in identifying potential therapeutic targets for mitigating disease progression.

Similar Papers

bioRxiv
Wed Sep 03 2025
Enzymatic Function of an Intrinsically Disordered Protein
Intrinsically disordered proteins (IDPs) challenge the traditional structure-function paradigm by lacking a stable three-dimensional structure 1. While their roles as dynamic effectors, scaffolds, and molecular switches are well-established, it has been widely accepted that enzymatic activity requires a stably folded catalytic center 2. Here, we challenge this dogma by demonstrating that a 284-ami...
Lyalina, T.
•
Paim, L. M. G.
•
Bechstedt, S.
bioRxiv
Wed Sep 03 2025
Diffusive and advective fluid flow shapes chemoautotrophic bacterial communities and sulfur mineralogy in hydrothermal sediments off Milos
Hydrothermal fluid flow not only shapes mineral deposition on the ocean floor but also creates ecological niches by altering temperature and energy availability. In these niches, microbial life thrives and has an additional, often unrecognized impact on mineral formation. In a newly discovered vent field in medium depths off Milos, Greece, we show how contrasting hydrothermal regimes host fundamen...
Maak, J. M.
•
Röttgen, C.
•
Winkelhues, B.
•
Anagnostou, E.
...•
Elvert, M.
bioRxiv
Wed Sep 03 2025
Purified Zymogens Reveal Mechanisms of Snake Venom Metalloproteinase Auto-Activation
Snake venoms contain diverse mixtures of toxins that evolved to incapacitate prey, but in humans they cause extensive pathology following snakebite envenomation. In viper venom, the most potent toxins are the haemorrhagic and coagulopathic snake venom metalloproteinases (SVMPs). Because venoms contain a SVMP cocktail, and due to their cytotoxicity, SVMP characterizations have been hampered by the ...
Hall, S.
•
Cardoso, I. A.
•
Wilkinson, M. C.
•
Carretero, M. M.
...•
Schaffitzel, C.
bioRxiv
Wed Sep 03 2025
Design of Orthogonal Far-Red, Orange and Green Fluorophore-binding Proteins for Multiplex Imaging
Fluorescent proteins have transformed biological imaging, yet their limited photostability and brightness restrict their applications. We used deep learning-based de novo protein design methods to design binders to three bright, stable and cell-permeable dyes spanning the imaging spectrum: JF657 (far red), JF596 (orange-red) and JF494 (green). We obtain highly specific dye-binding proteins with lo...
Tran, L.
•
Sharma, S.
•
Klein, S.
•
Jurgens, D.
...•
Baker, D.
bioRxiv
Wed Sep 03 2025
Structural basis of QueC-family protein function in qatABCD anti-phage defense
QueC proteins are nucleoside biosynthesis enzymes required for production of the 7-deazaguanine derivative queuosine. Recently, QueC-family proteins were also shown to catalyze a deazaguanylation protein-nucleobase conjugation reaction in type IV CBASS bacterial anti-phage defense. Here we determine the structural basis of QueC-family protein function in a distinct bacterial immunity system named ...
Gao, A.
•
Wassarman, D. R.
•
Kranzusch, P. J.
bioRxiv
Wed Sep 03 2025
The anti-phage mechanism of a widespread trypsin-MBL module
Protease mediate activation of immune effectors is a conserved mechanism across life. This study identified a widespread and co-evolving trypsin-MBL module as a core effector in diverse bacterial immune systems (e.g., Hachiman, Argonaute, AVAST), protecting host via abortive infection. Focusing on Hachiman-trypsin-MBL, we demonstrated that, the protease activity of trypsin-HamAB is inhibited in th...
Huang, P.
•
Liu, J.
•
Guo, L. G.
•
Xu, D.
...•
Chen, M.
bioRxiv
Wed Sep 03 2025
Novel single-domain AA12 pyrroloquinoline quinone-dependent oxidoreductases directly and co-operatively drive lytic polysaccharide monooxygenase activity with AA8 module
The single-domain auxiliary activity family 12 (AA12) pyrroloquinoline quinone-dependent oxidoreductases and free AA8 modules are prevalent in cellulolytic fungi, however, their function in polysaccharide biodegradation is still confused. Here, we characterized three single-domain AA12 oxidoreductases and one free AA8 module from Thermothelomyces thermophilus and Thermothielavioides terrestris. Al...
Sun, Y.
•
Yuan, C.
•
Long, L.
•
Ding, S.
bioRxiv
Wed Sep 03 2025
The MLLT3 YEATS domain is a dual reader of histone marks (H3K9/18/27ac/cr) and ncRNA (7SK), linking epigenetic and RNA signaling to regulate hematopoiesis
The protein MLLT3 (AF9) is a critical regulator of hematopoiesis. The N-terminal YEATS domain of MLLT3 is an epigenetic reader that binds to acetylated as well as crotonylated lysine. Using PAR-CLIP, biochemical assays, and NMR based mapping of binding, we demonstrate that the YEATS domain of MLLT3 binds to a specific stem-loop region of the noncoding RNA 7SK. 7SK is a noncoding RNA with a well-do...
Boulton, A.
•
Kabra, A.
•
Achille, N.
•
Adelman, E. R.
...•
Bushweller, J.
bioRxiv
Tue Sep 02 2025
SH2-mediated steric occlusion of the C2 domain regulates autoinhibition of SHIP1 inositol 5-phosphatase
The Src homology 2 (SH2) domain containing inositol polyphosphate 5-phosphatase 1 (SHIP1) is an immune cell specific enzyme that regulates phosphatidylinositol-(3,4,5)-trisphosphate signaling at the plasma membrane following receptor activation. SHIP1 plays an important role in processes such as directed cell migration, endocytosis, and cortical membrane oscillations. Alterations in SHIP1 expressi...
Drew, E. E.
•
Nyvall, H. G.
•
Parson, M. A. H.
•
Talus, R. K.
...•
Hansen, S. D.
bioRxiv
Tue Sep 02 2025
Sticky salts: overbinding of monovalent cations to phosphorylations in all-atom forcefields
Phosphorylation is a major post-translational modification, which is involved in the regulation of the dynamics and function of Intrinsically Disordered Proteins (IDPs). We recently characterized a phenomenon, which we termed n-Phosphate collaborations (nP-collabs), where bulk cations form stable bridges between several phosphoresidues in all-atom molecular dynamic simulations. nP-collabs were fou...
Marien, J.
•
Puyo-Fourtine, J.
•
Prevost, C.
•
Sacquin-Mora, S.
•
Duboue-Dijon, E.