2025 Hyper Recent •CC0 1.0 Universal

This work is dedicated to the public domain. No rights reserved.

Access Preprint From Server
September 7th, 2025
Version: 1
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
neuroscience
bioRxiv

Hypoimmunogenic human motor neurons induced from iPSCs in vivo substantially ameliorate ALS disease in large animal models

Zhang, N.Open in Google Scholar•Yang, Y.Open in Google Scholar•Chen, M.Open in Google Scholar•Zou, Q.Open in Google Scholar•Quan, L.Open in Google Scholar•Huang, J.Open in Google Scholar•Zhang, Q.Open in Google Scholar•Zhao, Y.Open in Google Scholar•Ouyang, Z.Open in Google Scholar•Zhang, Z.Open in Google Scholaret al.

Stem cell-based therapy holds great potential for substituting degenerated motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). Missing protocols for advanced differentiation of transplanted cells into MNs, immune rejection, and the lack of suitable ALS models for preclinical trials have slowed the development of effective therapies. Here, we employed multiplex genetic-editing to generate a novel human pluripotent stem cell line containing doxycycline (Dox)-inducible MNs-specific transcription factors and comprehensively modified immunomodulatory genes. We transplanted these cells into the spinal cord of ALS large animal models (SOD1G93A pigs and TIA1P362L rabbits), which faithfully recapitulate pathologies and symptoms observed in ALS patients. The transplanted cells could efficiently differentiate into functional MNs upon Dox treatment in vivo, distribute throughout the spinal cord and motor cortex via extensive migration, survive long-term without the need for immunosuppression. Notably, these MNs integrated into host neural circuits, as evidenced by their long projection of peripheral axons to target muscle and reformation of neuromuscular junctions. As result, pathologies and motor deficits were substantially ameliorated in both animal models.

Similar Papers

bioRxiv
Mon Sep 08 2025
Astrocytes mobilize a broader repertoire of lysosomal repair mechanisms than neurons
Lysosomal damage impairs proteostasis and contributes to neurodegenerative diseases, yet cell-type-specific differences in lysosomal repair remain unclear. Using a neuron-astrocyte coculture system, we compared responses to lysosomal injury induced by a lysosomotropic methyl ester. Both neurons and astrocytes showed lysosomal damage, marked by galectin-3 recruitment to lumenal lysosomal beta-galac...
Smith, E. M.
•
Chanaday, N. L.
•
Maday, S.
bioRxiv
Mon Sep 08 2025
Cortex-wide alignment to the temporal structure of smartphone interactions
Smartphone use varies ranging from rapid, rhythmic tapping (e.g., texting) to slower, irregular scrolling (e.g., browsing), resulting in diverse patterns of inter-touch intervals. The underlying brain processes may dynamically align to these patterns. We investigated brain signals captured by using EEG during hour long smartphone use sessions (n = 53 subjects, accumulating 136,869 interactions). W...
Wan, W.
•
Ghosh, A.
bioRxiv
Mon Sep 08 2025
Developmental excitation-inhibition imbalance permanently reprograms autism-relevant social brain circuits
An influential theory proposes that an imbalance between excitation and inhibition (E:I) plays a central role in the etiology of autism and related developmental disorders. However, controversy exists as to whether this imbalance is a direct causal mechanism for autism, or a compensatory response to other primary etiological factors. Using chemogenetic manipulations in neonatal mice, we show that ...
Stuefer, A.
•
Colombo, G.
•
Gini, S.
•
Sastre-Yague, D.
...•
Gozzi, A.
bioRxiv
Mon Sep 08 2025
Evidence for hierarchical representations of written and spoken words from an open-science human neuroimaging dataset
Reading and speech recognition rely on multi-level processing that builds from basic visual or sound features to complete word representations, yet details of these processing hierarchies (in particular those for spoken words) are still poorly understood. We re-analyzed the functional magnetic resonance imaging (fMRI) data provided in the Mother Of all Unification Studies (MOUS) open-science datas...
Banerjee, S.
•
Jin, K.
•
Nikolov, P.
•
Cho, P.
...•
Riesenhuber, M.
bioRxiv
Mon Sep 08 2025
Neuronal and Astrocytic Activity Changes Induced by Acute and Chronic Stress
Stress is a major risk factor for depression and exerts complex effects on brain function and behavior. In this study, we examined the neural mechanisms of stress responses in the prefrontal cortex (PFC), with particular focus on neuron/astrocyte interactions. Using dual-color fiber photometry, we simultaneously monitored neuronal and astrocytic activity during acute and chronic stress. Acute stre...
Bansal, Y.
•
Mitchell, M. A.
•
Codeluppi, S. A.
•
Knoch, J.
...•
Banasr, M.
bioRxiv
Mon Sep 08 2025
Motor cortex flexibly deploys a high-dimensional repertoire of subskills
Skilled movement often requires flexibly combining multiple subskills, each requiring dedicated control strategies and underlying computations. How the motor system achieves such versatility remains unclear. Using high-density Neuropixels recordings from primary motor cortex (M1) in macaques performing a challenging force-tracking task, we reveal that M1 activity is much higher-dimensional, and fa...
Amematsro, E. A.
•
Trautmann, E. M.
•
Marshall, N. J.
•
Abbott, L.
...•
Churchland, M. M.
bioRxiv
Sun Sep 07 2025
Enhancing experience-dependent plasticity accelerates vision loss in a murine model of retinitis pigmentosa
Modulating neural plasticity is pursued as a therapeutic approach for several neurologic conditions. Here we evaluated if enhancing experience-dependent plasticity prolongs vision in a murine model of retinitis pigmentosa. First, we quantified the loss of visual acuity under both scotopic and photopic conditions for mice heterozygous for the P23H mutation in the Rhodopsin gene (Rho P23H/+). Acuity...
Attaway, C. A.
•
Brown, T. C.
•
McCall, M. A.
•
McGee, A. W.
bioRxiv
Sun Sep 07 2025
Erucamide regulates retinal neurovascular crosstalk
Neurovasculoglial crosstalk is critical in establishing and maintaining a functional neurovascular unit. Breakdown in the unit is central to many neurodegenerative disorders of the CNS of which the retina is a component. A growing literature indicated that primary fatty acid amides (PFAMs) can regulate this crosstalk between vasculature and neuronal tissues. In this study we describe a central rol...
Wei, G.
•
Chatterjee, S.
•
Yang, Q.
•
Vijayakumar, S.
...•
Friedlander, M.
bioRxiv
Sun Sep 07 2025
Neuroinflammation links the neurogenic and neurodegenerative phenotypes of Nrmt1-/- mice
It is widely thought that age-related damage is the single biggest contributing factor to neurodegenerative diseases. However, recent studies are beginning to indicate that many of these diseases may have developmental origins that become unmasked overtime. It has been difficult to prove these developmental origins, as there are still few known links between defective embryonic neurogenesis and pr...
Catlin, J. P.
•
Fraher, S.
•
Alexander, J. J.
•
Schaner Tooley, C.
bioRxiv
Sun Sep 07 2025
Non-synaptic Mechanism of Ocular Dominance Plasticity
Classic experiments showing that monocular visual disruption alters synaptic connections to binocular neurons in the brain established the fundamental concept of synaptic plasticity through coincident spike time arrival. However, if the speed of impulse transmission from the eye is altered by visual deprivation, spike time arrival at binocular neurons would be affected, thereby inducing synaptic p...
Foote, M.
•
Huffman, W.
•
Santos, E.
•
Lee, P.
...•
Fields, R. D.