The end-stage pathology of Parkinson's disease (PD) involves the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). However, synaptic deregulation of these neurons begins much earlier. Understanding the mechanisms behind synaptic deficits is crucial for early therapeutic intervention, yet these remain largely unknown. In the SNc, different dopamine neuron subtypes show varying susceptibility patterns to PD, complicating our understanding. This study uses intersectional genetic mouse models to uncover synaptic perturbations in vulnerable dopamine neurons, focusing on the LRRK2 kinase, a protein closely linked to PD. Through a combination of immunofluorescence and advanced proximity labeling methods, we found higher LRRK2 expression in the most vulnerable dopamine neuron subclusters. High-resolution imaging revealed that pathogenic LRRK2 disrupts release sites in vulnerable dopamine axons, leading to decreased in vivo evoked striatal dopamine release in mice with LRRK2 mutations. Proteomic and biochemical analyses indicate that mutant LRRK2 increases the phosphorylation of RAB3 proteins, reducing their interactions with RIM1/2 effector proteins and impacting their synaptic functions. Overall, this research highlights the cell-autonomous dysfunctions caused by mutant LRRK2 in the neurons that are primarily affected by the disease. It also provides a framework for therapeutic strategies for early nigrostriatal synaptic deficits in PD.