Cryopreservation at ultra-low temperatures is a valuable tool for preserving cells and tissues used in research. However, few protocols exist for the preservation of brain organoid models. Current methods for preserving human cortical organoids (hCOs) rely on conventional slow cooling approaches with organoids suspended in a medium containing a cocktail of cryoprotectants. In contrast, we have optimized a vitrification technique previously used to cryopreserve human embryos and oocytes for application to hCOs. We have successfully cryopreserved hCOs that were generated by two different protocols. The vitrified organoids demonstrate a growth rate, cytoarchitecture, cell type composition and electrical activity comparable to non-vitrified controls. Our hCO cryopreservation method provides a useful alternative approach for bio-banking and cross-institutional collaboration using cortical organoids as their model system.